
Intel, the Intel logo, Intel® Xeon Phi™, Intel® Xeon® Processor are trademarks of Intel Corporation
in the U.S. and/or other countries. *Other names and brands may be claimed as the property of
others. See Trademarks on intel.com for full list of Intel trademarks.

Techniques for Holistic Quantification of Performance,
Portability, and Productivity
Jason Sewall, John Pennycook, Doug Jacobsen
Intel Corporation
P3HPC Forum 2020

Acknowledgements: University of Bristol

http://www.intel.com/sites/corporate/tradmarx.htm

© 2020 Intel Corporation

, Quantitative Performance Portability

2

𝑒𝑖 𝑎, 𝑝 = efficiency of application 𝑎 for
input problem 𝑝.
𝐻 = set of platforms of interest

S.J. Pennycook, J.D Sewall, V.W. Lee, “Implications of a Metric for Performance Portability” in Future Generation Computer Systems , 2017

The harmonic mean of performance efficiency on a set of platforms

• Has desirable properties:
• Supports many definitions of application/problem/efficiency/platform
• Improving any result improves the metric
• Non-portable code (i.e. performance of 0 on a platform) has score of 0
• Easy to compute

© 2020 Intel Corporation

Code Divergence: quantitative portability/productivity

3

▪ Previous metric is completely orthogonal to productivity

▪ ‘Duct-tape’ apps with totally distinct code for each platform compared to single-
source applications

▪ We introduced code divergence:

▪ Average of code distance between each pair of platforms

▪ Use Jaccard distance of lines of code:
𝑐𝑖∪𝑐𝑗 − 𝑐𝑖∩𝑐𝑗

𝑐𝑖∪𝑐𝑗

▪ Has desirable properties:
▪ ‘Duct-tape’ apps have divergence of 1
▪ Single-source apps have divergence of 0
▪ Partially specialized codes fit in between

[1] S.L Harrell, J. Kitson et al., “Effective Performance Portability”, in Proceedings of P3HPC, 2018

© 2020 Intel Corporation

Code Divergence – Simple Example

Codebase 1

shared.cpp:
void whereami()
{
#ifdef CPU
printf(“CPU\n”); ← 1 line specific to CPU

#else
printf(“GPU\n”); ← 1 line specific to GPU

#endif
}

Divergence = (8 – 6) / 8 = 0.25

Codebase 2

cpu.cpp: ← entire file specific to CPU
void whereami()
{
printf(“CPU\n”);

}

gpu.cpp: ← entire file specific to GPU
void whereami()
{
printf(“GPU\n”);

}

Divergence = ((4 + 4) – 0) / 8 = 1.0

4

© 2020 Intel Corporation

Combining metrics

5

▪ These metrics are complementary: one captures performance & portability,
another productivity

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A B C D E F

P
er

fo
rm

an
ce

 E
ff

ic
ie

n
cy

Platform

Example Application

PP(a,p,H) = 23.30%

Efficiency PP

Performance & Portability Productivity

© 2020 Intel Corporation

Combining metrics

6

▪ Plotting metrics in 2D can be illuminating. Select platform set, use for both
PP and Code Divergence computation

▪ Code Divergence is
the right metric, but
it doesn’t plot well

▪ Rather, use ‘Code
Convergence’ (1-
Code Divergence)

B
e

tt
e

r
P

e
rf

o
rm

a
n

ce

Higher divergence

B
e

tt
e

r
P

e
rf

o
rm

a
n

ce

Higher convergence
(lower divergence)

© 2020 Intel Corporation

Boxing the combined graph

7

Perfect performance
portability, total
convergence

No performance
portability, total
convergence

No performance
portability, total
divergence

Perfect performance
portability, total
divergence

© 2020 Intel Corporation

Boxing the combined graph

8

Can always construct this by combining
(disparate) implementations that are best for
each platform of interest.
AKA “the duct tape solution”

PP=0 axis is of little interest---code doesn’t
run on one or more platforms!

© 2020 Intel Corporation

Boxing the combined graph

9

The Promised Land: single-source,
best performance on all platforms
(not realistic!)

© 2020 Intel Corporation

Translation in the PP-CC Plane

10

▪ Given ‘duct-tape’ application, how do
we get the best case?

▪ PP and CC are linked

▪ CC = 1/PP = 1 are very hard to
achieve, but settling for close to
these limits has opportunities

▪ Heroic (magic?) compilers needed for
strict increases

© 2020 Intel Corporation

Translation in the PP-CC Plane

11

▪ Movement can be broadly described in
terms of the axes (assume fixed
platform set)

▪ More abstraction -> Higher convergence

▪ Less abstraction == specialization ->
lower convergence

▪ Better optimized code -> Higher PP

▪ Regressed code -> Lower PP

− Never a standalone goal, but a side-effect

Optimization

AbstractionSpecialization

Regression

© 2020 Intel Corporation

Translation in the PP-CC Plane

12

Specialization/Regression quadrant:
Includes Specialization/Regression axes
Almost never an actual goal.
Hypothetical causes:
• Feature added that decreases

performance (possibly specialized)

© 2020 Intel Corporation

Translation in the PP-CC Plane

13

Specialization/Optimization quadrant:
Very typical scenario:
1. Relatively convergent codebase
2. Identify lagging platforms
3. Introduce specializations to improve

performance

Considerations:
• How fine-grained is specialization

mechanism?
• What is the trade-off of CC vs. PP?

© 2020 Intel Corporation

Translation in the PP-CC Plane

14

Optimization axis:

A change to common codebase increases
overall PP
• Due to performance gains on a single

platform or across multiples

Optimization/Abstraction quadrant:

Code is more convergent and more
performant!
• Tool/backend improvements
• Magic compilers

© 2020 Intel Corporation

Translation in the PP-CC Plane

15

Abstraction axis:

Refactoring code increases CC, doesn’t
affect performance.

Regression/Abstraction quadrant:

Abstraction penalties arise.
As abstractions are introduced,
performance on some platforms may
decrease

© 2020 Intel Corporation

MiniMD

16

▪ Venerable Mantevo proxy for LAMMPS

▪ Original OpenMP code is CPU-only

▪ miniMxhd developed by Intel

▪ Highest performing CPU version

▪ Kokkos version developed by Sandia

▪ Highest-performing GPU version

▪ OpenMP 4.5 version developed by Intel

▪ Achieves highest PP due to highest CPU
performance among GPU-supporting
codes

https://github.com/Mantevo/miniMD
Pennycook, Sewall, Hammond “Evaluating the Impact of Proposed OpenMP 5.0 Features on

Performance, Portability, and Productivity”. SC P3HPC 2018

P
la

tfo
rm

s: C
P

U
, G

P
U

https://github.com/Mantevo/miniMD

© 2020 Intel Corporation

Hydro2D

17

▪ CEA benchmark code

▪ OpenMP code optimized by Intel

▪ Autovectorization performance poor,
but single codebase

▪ Manual vectorization using intrinsics
introduced for each SIMD ISA

▪ High performance, less convergence

▪ Refactoring to a common vector
abstraction results in matching
performance, higher convergence.

P
latfo

rm
s:

C
P

U
0

,C
P

U
1

,C
P

U
2

,C
P

U
3

Sewall, Colin de Verdiere, “From ‘Correct’ to ‘Correct and Efficient’: A Case Study with

Hydro2D”. Intel Xeon Phi Programming Gems, Reinders et al. eds 2015.

© 2020 Intel Corporation

Babelstream

18

▪ Multi-platform STREAM code

▪ Many implementations

▪ Minimal effort made to reduce divergence

▪ Synthetic ‘Duct Tape’ app constructed from
all codes

▪ Highest PP, low CC

▪ OpenMP has slightly different codes for CPU
and GPU (omp target)

▪ High PP, some reduced CC

▪ Kokkos, OpenACC, and OpenCL CC > 0.999

▪ OpenACC and OpenCL have nearly identical
PP

https://github.com/UoB-HPC/BabelStream

Deakin T, Price J, Martineau M, McIntosh-Smith S. GPU-STREAM v2.0: Benchmarking the achievable
memory bandwidth of many-core processors across diverse parallel programming models. 2016. Paper
presented at P^3MA Workshop at ISC High Performance, Frankfurt, Germany.

P
la

tfo
rm

s: C
P

U
0

-1
, G

P
U

0
-4

https://github.com/UoB-HPC/BabelStream

© 2020 Intel Corporation

Aggregate analysis

19

▪ How can we apply this to a group of
codes running on the same
platforms?

▪ What does it tell us?

▪ How can we use it to measure success

− Of codes

− Of tools

▪ Synthetic data presented for
exposition

P
latfo

rm
s:

C
P

U
0

-6
, G

P
U

0
-4

, F
P

G
A

0
-2

© 2020 Intel Corporation

Aggregate analysis

20

▪ Given goal of having
codes in the upper-
right part of chart:

▪ Score each point with
min(PP,CC)

▪ Sort into bins of length
1/10

▪ Extract statistics

▪ Minimum is 0.21

▪ Median is 0.60

▪ Maximum is 0.91

P
latfo

rm
s:

C
P

U
0

-6
, G

P
U

0
-4

, FP
G

A
0

-2

© 2020 Intel Corporation

Aggregate analysis

21

▪ Optimized codes/tools

▪ Set goal that 50% of
codes must score 0.8
or higher

▪ Stats:

▪ Minimum is 0.62

▪ Median is 0.86

▪ Maximum is 0.993

P
la

tfo
rm

s:
C

P
U

0
-6

, G
P

U
0

-4
, F

P
G

A
0

-2

© 2020 Intel Corporation

Review

22

▪ Performance portability and code divergence scores are complementary in a
P3 context

▪ Combining them in a 2D plot—with attention to platforms and adjustment to
code convergence—can reveal useful trends and patterns, both with single
applications and aggregates

▪ Seeing current status and setting goals in the PP-CC plane can give clues on how to
proceed to improve application

▪ Methods derived from this are used as internal scoring metrics inside Intel to
guide us to a more P3 future

© 2020 Intel Corporation

Future work

23

▪ The usefulness of P3 is inherently subjective

▪ Need more data on what people are satisfied with, and how it looks in these
visualization

▪ Varying platforms in these graphs is a promising direction for understanding
sensitivity in toolchains and hardware

▪ “Language shootout” applications for understanding relative
strengths/weaknesses among programming tools

▪ More real data sets analyzed and published!

© 2020 Intel Corporation

Legal Disclaimers

24

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests to assist you in fully eval uating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.

Performance results are based on testing as of the publication date of the referenced papers and may not reflect all publicly available security updates. See configuration
disclosure for details. No product can be absolutely secure. Configurations:
Slide 16 – Measured by Intel; J. Pennycook, J. Sewall, J. Hammond “Evaluating the Impact of Proposed OpenMP 5.0 Features on Performance, Portability, and Productivity”. SC
P3HPC 2018
Slide 17 – Measured by Intel & CEA: J. Sewall, G. Colin de Verdiere, “From ‘Correct’ to ‘Correct and Efficient’: A Case Study with Hydro2D”. Intel Xeon Phi Programming Gems, Reinders
et al. eds 2015.
Sl ide 18 – Measured by University of Bristol: T. Deakin, J. Price, M. Martineau, S. McIntosh-Smith. GPU-STREAM v2.0: Benchmarking the achievable memory bandwidth of many-core processors
across diverse parallel programming models. 2016. Paper presented at P^3MA Workshop at ISC High Performance, Frankfurt, Germa ny.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced
data are accurate.

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the avai lability, functionality, or effectiveness of any
optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain
optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information
regarding the specific instruction sets covered by this notice. Notice Revision #20110804

Intel, the Intel logo, Xeon, and Xeon Phi are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other co untries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/benchmarks

